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Summary. The recently developed relativistic double perturbation theory is 
extended to handle relativistic changes of  molecular structure more easily. This 
is achieved by simple coordinate scalings. Accurate higher order mixed perturba- 
tion energies for H2 + are calculated. The relativistic changes of  bond energy, 
ADE, of  bond length, ARt,  and especially of  force constant, Ak, and of 
anharmonicity, Aa, are large, up to 100% • (Z/c) 2. The dominant contributions 
to Ak and Aa are due to the "indirect" change of the nonrelativistic k and a 
connected with the relativistic change of bond length. Accordingly the relativistic 
changes obey Badger's and Gordy 's  rules ( - A R  ,-~ ADE , ,  Ak). 
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1 Introduction 

The equlibrium structure R e of a molecule with Born-Oppenheimer  Hamiltonian 
Ho(R ) can be changed by a perturbation AH. A H  may be an external field (such 
as a magnetic or electric laboratory field; or the electrostatic field above the 
surface of a solid, e.g. of  an adsorbed molecule or of  a molecule on the tip of  a 
field desorption mass spectrometer; or the Madelung potential in a cavity of  an 
ionic crystal surrounding a molecule or a tom group; etc.). A H  may also be a 
genuine term of the total Hamiltonian H, which has been neglected in the 
approximate Hamiltonian H0 (such as electron correlation in the H a r t r e e - F o c k  
approximation; or relativity in the nonrelativistic approximation; etc.). 

Double perturbation theory is a useful tool both to estimate and, especially, 
to elucidate the structural change AR e due to AH. Then the first perturbation is 
the change of  the nuclear potential due to the shift ARe of the nuclear positions, 
and the second perturbation is AH(R) mentioned above. In the present paper, 
A H  will be the relativistic correction. We write the total Hamiltonian as: 

H = Ho(~ • /IRe) + ~ " AH(~"  ARe) . . . .  Ho((~ R °) + ~ AH((~ Re) , °  (1) 

* Dedicated to Prof. Klaus Ruedenberg in appreciation of his fundamental contributions to both 
formal theory and physical explanations in quantum chemistry 
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where the two formal perturbation parameters n and 0 vary from 0 to 1. zc 
monitors the potential from the nonrelativistic nuclear equilibrium position 
( r e . A R t  = 0 )  to the relativistic one (1 .  ARt ) ;  0 monitors relativity from the 
nonrelativistic case (0 = 0, c = oo) to the relativistic case (H = Ho + 1 • AH) .  We 
expand the energy as a power series of the relativistic parameter 0, and of the 
structural change parameter 6 with 6 • R = n • A R  e (we use 6 instead of  re, so we 
need not know the ARt  in advance): 

E(6, ~) = L E(p'r) " 6p " Q r = ~ E(p) . 6p = 2 E~ ~) " Q" (2) 
p , r  p r 

We may now express ARt  as a functional of A H  with the help of the double 
perturbation energies E (p'r) (see Sect. 3). 

The variation of the electron-nuclear potential Vn« with variation of  the 
nuclear positions R has a disadvantageous power expansion in ö. Assume, for 
instance, a nucleus with change + Z e  at the origin, which is shifted by d Z  in the 
z-direction. Then, for d Z  < r 

V~« = - Z e 2 / I  r - azl  = - L (Pp(COS 0)" Ze2/r  p+ 1). azp .  (3) 
p = 0  

First, the potential operator Vne contains an infinite number of perturbation 
terms of all orders d Z  p and p = 1, 2, 3 , . . . .  Second, the perturbation of the 
potential V~« (due to ~ • ANe) appears both in the nonrelativistic Hamiltonian H0 
an in its relativistic correction, ~ • AH,  see Eq. (1). Accordingly, the Hamiltonian 
H contains an infinite number of mixed perturbations ~ 0 • d Z  p, first order in 
relativity and p th  order in the change of structure, with p = 0 and also with 
p = 1, 2, 3 , . . . .  Third, the singular perturbation terms ~ Pp(COS 0)/r p + 1 
in the Hamiltonian resuit in singular perturbation functions, which are not easily 
representable in standard basis sets. A differential shift of the nuclei requires a 
corresponding shift of the basis functions. For  instanee, in first order because of 

0 -«lr-~l  Z - - Z e _ « l r _ R L  
aZ r 

a so-called lp-function is needed in the case of a l s  basis function (compare the 
similar case of the calculation of nonadiabatic coupling elements gradients etc.). 
More singular basis functions are required for the higher order perturbation 
functions. Even worse, the perturbation expressions contain several contributions 
of opposite sign which, when not analytically kept together, will lead to divergent 
integrals [1, 2]. 

Therefore, we look for a transformation so that: 
/ 

(1) the perturbation consists of only a single linear term in 6, and , j - -  
(2) the perturbation potential and perturbatlon functlons are less singular. 

This will be achieved in Sect. 2 by rescaling techniques. / 
For  heavy atoms, relativistic effects become important in the vale~nce shell. 

Having appropriate perturbation expressions at hand for the derivatives of the 
molecular potential hypersurface, we can investigate its change due t 9 relativity 
[ 1, 3]. Expressions which are easy to apply in numerical calculations are pre- 
sented in Sect. 3. 

These expressions are then used to determine the relativistic correetions of 
the bond length Re, of the force constant k, and of the anharmonicity constant 
a, of the HJ- molecular ion. Accurate results are presented in Sect. 4. 
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2 Scaling of the molecular one-electron equation 

Within the framework of the Born-Oppenheimer clamped nuclei approximation, 
we write the Dirac equation in the form [ 1, 2]: 

[~~~e-~e,~~,~(ò «°0+(° ' _~°~)](~+)=0 ~4, 
with nuclear-electron potential energy: 

vù« = -Ze~Z , / I  R, -"1 (») 
i 

and Q = 1 for the relativistic case, 0 = 0 for the nonrelativistic case, i.e.: 

Vn« - Ee,(~ = 0) + ~p 2~-_-~m «p 0+ = 0. (4nr) 

The total energy at internuclear distance R = ]R1-  R2] is: 

Er(il, R) = Ee,(O, R) + e2Z, Z2/R. (6) 

The second term in Eq. (4) is the (relativistic or nonrelativistic) kinetic energy 
operator T in four-component representation, and ¢_ = c - ¢ _  (i.e. change of 
metric as proposed by Kutzelnigg [2c]). 

At the relativistic internuclear distance: 
r __ 0 __ 0 

- R e  7, 7 = = R e - Re + ARt • i.e. 1 + ARe/R ° 1 + 6, (7) 

where Re is the nonrelativistic bond length, 6 = ARe/R is the fractional relativistic 
change of bond length which may be positive or negative, Eq. (4) reads: [ (ò o)+(0 o, )] ~~:+~ 

{Vù«(Ré, r)-E««(Q, Ré)} .  O/c 2 «p - 2 m  • \~Õ j =0.  (8) 

The nonrelativistic analog for ~ = 0 is simply: 

{ Vù«(R °, r) - E~,(~ = O, R °) +p2/2m}¢+ = 0. (8nr) 

Equations (3, 4, 8) had been used in Ref. [1] to determine ARt. In order to solve 
these equations accurately for the higher perturbation energies in a finite basis set, 
the basis functions taust be selected very carefully because of the reasons 
mentioned in the introduction. Therefore we now look for a coordinate transfor- 
mation so that the nuclear displacement parameter does no longer appear in all 
orders, as dZ in Eq. (3), but simply scales either (a) the potential or (b) the kinetic 
energy operator, respectively, in Eq. (4) in a linear manner. Generalizing the 
nonrelativistic approach of Cohen and McEachran [8], we substitute: 

r = r " 7 ,  # = 0 " 7  2, ~ '-  = ¢ 2 / 7 ,  (9) 

into Eq. (8) and obtain: 

B { Vne(Re, r') /7 - E«'(Œ" 72, R°7) } "(Ò °"/<)l (~;3=0 -2mly}J \¢'_} 
(10) 

Note that scaling distances (r ~ r') will automatically scale also the velocities 
(Q/c2~ 0'/c2). This change of scale is defined so that the nuclear positions do not 
change their numerical values upon relativistic change of bond length. Then the 
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basis functions also need not be shifted, and no singular functions such as 
(d/dRe)(ls) etc. are required. 

Multiplying the upper and lower lines, respectively, (a) by 7 2 and 71, or (b) 
by 71 and 7 °, we obtain: 

(a) either (upon introducing 6 = 7 -  1, where 6 is the fractional change of 
internuclear distance, AR~/R °, see above): 

I ('0 0 {(1 4-6). Vne(R°,P ') -£el(~,Q' ,R°)}  " Q/e2] qp, 
""  )] 

- 2 m ] J  \~'__/ 
(11a) 

with 

Er(e, R ° + ARe) = e 2" ZI " Z2/TR ° + Eel(~, ~/7 2, R°e)/7 2, 

(b) or (upon introducing ~ = 7 - '  - l, where ~ = -ARe / (R  ° + ARe)): 

f{V,e(R°e,r')-qet(v,Q',R°)} "(10 ~o,/O2)+(1 + z ) . ( O  

(12a) 

• ~ 0  

-2m/J 
( l lb)  

with 

ET(O, R ° + ARe) = e 2" Zl " Z2/TR ° + qe,(r, 0/72, R°)/7 • (12b) 

With the help of the coordinate transformation of Eq. (9), the complicated 
expression of the perturbed potential is simplified to contain only a first and/or 
a zeroth order term, respectively. Since the relativistic perturbation of order Q / e  2 

in Eq. (4) contains just (V~ -Eet),  this coordinate transformation is equally 
useful in the nonrelativistic and relativistic cases. The perturbation becomes 
simply c5 • V,e in Eq. (1 la) corresponding to a change of distances, or • • T in Eq. 
(1 lb) corresponding to a change of velocities. The perturbed equations contain 
only a single linear perturbation of the unshifted positions R ° of the nuclei, but with 
modified velocity of light c "7 [i.e. o'/e z= O/(c" 7) 2] and 

(a) either with modified nuclear charge Z,-'7 = Zi -(1 + 6) (Eq. lla), 
(b) or with modified electronic mass m/7 = m .  (1 + z) (Eq. l lb). 

Therefore the perturbed wavefunctions will easily be representable in standard 
basis sets. 

Expanding now Er from Eqs. (12a,b) in 0, and in c5 or ~, respectively, and 
equating with the expansion of ET from Eqs. (2, 6), we obtain: 

Z1Z2 .e2+ ~ ( - 1 )  p - i .  .e§ -i'~ (13a) 
E (p'r)=(-1) p" 60,r" Re ,'=o i 

p,r The E(P'r)-perturbation terms are thus expressed as sums of the terms e~ ~ or qel , 

which are easily obtained from the perturbation equations for the eP,~: 

~ (HP'~--,P'~'fi+--EP'~-1 "fl-)"@P-J'~-i=O (14a) 
j=Oi=O 

or from identical equations "(14b)" for the r/p'~, with: 

ep,-1 =qp,-1 =-0, (15) 
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and 

,+ : (ò ~) , : ( o  o ~) 
H °° = fl+ • Vne -]- (Œ "p - -  2fl- • m) = fl+ • Vne .9f_ T, (16) 

H 0 1 = f l -  " Vù«. 

For cases (a) and (b), respectively, 

Hl°  =/3 +" Vn«, H ~1 = f i - "  Vùe, (17a) 

and 

H l ° =  T. (17b) 

All other H p'r vanish. Explicit formulae for the e pc and t/P," may then be obtained 
as in Rel. [1] for the E (p'r). 

3 Relativistic changes of bond length, force constant and anharmonicity 

Knowing the expansion of  Eq. (2) from Eqs. (13a,b), it is easy to determine the 
relativistic changes of bond length ARe, of  force constant Ak, of lowest order 
anharmonicity Aa, etc. The nonrelativitstic and relativistic molecular structures 
are implicitly given, resp., by: 

N °: (dEr/«fi)~=o,o~o-- 0, (18) 

ARe: (dEr/d6)~~~Remoo = 1  : O .  ( 1 9 )  

This means: c~Er(o = O, R°)/OR = 0 and ~?Er( 0 = 1, (1 + ~) • R°)/~R = 0, which 
defines a function between the relativistic parameter 0 and the bond length 
parameter 6. From Eqs, (2, 9) then following: 

A R t = c o +  ~ «p'ARP,  (20) 
p - - 2  

where we have introduced the abbreviation: 

C~p = - ( p  + 1) • E(P+o = 11 /{ ' )  K'(2)/k'~L'Œ = 1 . R p - 1). (21) 

Equation (20) can be solved by recursion 

A R« = c~ o ( 1 + c~ o (~2 + 

C~o(C~ 3 + 2c~~ + 

C(0(Œ 4 + 5 ~ 3 ~  2 + 5 ~  3 -~ (22) 

C~o(~» + 6e4c~2 + 3e32 + 21e3e~ + 14c~ 4 + 

0~0 ( ~6  . . . .  

The corresponding equations for force constant and anharmonicity read (with 
Bi  j~ ' ( i÷  1) / ]~7'(i-I- 1)~. : ~"0 = 0 /~t.,~ : 1 ) '  

Ak = 2Eg2): 1/R~" (1 -/~1 - «o(2«2 + 

C~o(3~3 + 2c~ 2 + 

Œo(4Œ4 q- 8Œ3Œ 2 q- 4« 3 + (23) 

~o(5~5 -t- 14~4~2 -1- 6«32 + 25«3«~ + 10« 4 + 

~ o ( 6 ~ 6 + ' ' "  



110 A. Rutkowski et al. 

A a  = A ~?(2) / j ~ 2  ---rJ-JLo = l / J t - e  " {Œ2(1 - f12) -t- Œ0(3Œ3 + 

0~0(6~4 ÷ 3a3Œ2 

a0(10~5 ÷ 12~4~ 2 ÷ 3«~ + 6«3« 2 + 

s 0(15te 6+"  • •. (24) 

4 Application to the lag state of  H + 

The present formalism has been applied to the ground stare of H + in a finite 
Gaussian basis set. At first we comment on the possible accuracy of the calculated 
perturbation energies, E n being a simple example. Since for any real expectation 
value 

(~k lA 1~> = (~  lA I~p>* = (~  lA + [0>, (25) 

we may write 

(~OOl/~lo.~ö öl/~o11~oo» = <~oo1#ol ~ööl/~1o1~9oo) (26) 
where /1~ is an abbreviation for ( H -  E)~. Inserting /~o1~oo = _~oo~0ol and 
/~1o~oo= _/~oo~klo ' Eq. (26) becomes identical with the double perturbation 
theorem: 

<~oo]/~lOl~Ol > = <~oo]/~ol i@m>. (27) 

If  O °°, 0 °1 and 01° are all approximated in the same basis, that is if a l l / t ' s  are 
represented in the same basis, then Eq. (26) and therefore also Eq. (27) holds 
exactly. This is so even if the basis is only sufficient to represent 0 °° accurately 
while being too small to approximate 0 °1 or 01° reasonably well, so that the 
matrix elements in Eqs. (26, 27) may both be quite inaccurate, but still equal. To 
turn it around, in order to calculate accurate perturbation energies, all opera tors  
taust be represented in an extended basis which is sufficient to approximate all 
functions which they generate, even if they do not appear explicitly, as e.g. in Eq. 
(26). 

For the nonrelativistic l%-state of H g ,  ag AOs on the molecular axis are 
sufficient to represent the upper  component ~o+0, which is just the usual 
Schrödinger wavefunction. We have used 27 Gaussian s-lobe functions of «-spin 
(symmetrized to yield ag MOs) with partially optimized positions and exponents 
between 5.0E8 and 0.08 (see [2b] and appendix), and 12 cartesian Gauss-p« AOs 
with the same exponents between 3.5E7 and 1.5El. For extended calculations, orte 
sŒ, 9 pc, 14 d« and 14f« funetions of the general form: 

Zi = z ' / •  exp( - ~ i "  r~) • c~ (28) 

were added, which changed the results only slightly (see "large basis" in Table 
1). The same bases were used for ~ ~. 

Relativistic spin-orbit coupling mixes « 1/2 with rr 1/2 (compare Sundholm et al. - - g  - - g  

[4]). Accordingly rc AOs with 3-spin are needed in addition for ~ ~ '  

Zs = (x j  + iy j)  . z~ .exp( - ~ j .  tl) • /L (29) 

For the pro and drc AOs of the "small" basis, the same exponents were ehosen as 
for the ser and pc AOs, and also for the frc and grc ones of the "large" basis. The 
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Table 1. Per turbat ion energies of  H~- in a.u. 
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Basis Method  of  Ref, [1], Eqs. (3,4) Present method,  Eqs. (11) Large  basis Mos t  

27s a 64s ~ 27s + 1 2 p c  27s + 12pc + reliable 
27p~ + 12dn literature 

data  ° 

R nr 1.997 192 1.997 192 1.997 1933 1.997 1933 1.997 1933 1.997193 [6] 

E °° - .602 6343 - .602 6346 -- .602 634 62 - .602 634 62 -- .602 634 629 - .602 643 62 [6] 
- .602 634 6 [9 d] 

- . 6 0 2  634 629 [10] 
E 10 0 0 0 0 0 

E 2° 0.051450 0.051 568 0.051 4854 0.0514854 0.051485 23 0.051 5 [6] 

0.051 3 [9 a] 
E 3° - . 0 4 3  632 - . 0 4 3  89 - . 0 4 3  5305 --.043 5305 - . 0 4 3  5307 

E 40 0.0266355 0.0266355 0.0266354 

E 5° -- .014 7515 ,014 7515 .014 7515 

E m • c 2 - . 1 3 8  531 .138 534 - . 1 3 8  5338 - , 1 3 8  5338 - . 1 3 8  533 96 - . 1 3 8  533 97 [10] 
- . 1 3 8  534 [9 d] 

E I1 " c 2 0.071 75 0.071 751 0.071 7639 0,071 7639 0.071 7686 0.071 772 [9 d] 
E 21 "c ~ - . 0 4 4 9  b - . 0 5 5  08 b - . 0 5 7 4 6 1 2  - , 0 5 7 4 6 1 2  - . 0 5 7 4 6 1 6  - . 0 6  [3,6] 

- . 0 5 7  32 [9 d] 

E 31 " c z 0.032 746 0,032746 0.032 747 0.031 5 [9 a] 
E 41 • c 2 - . 0 1 7  313 --,017 313 - . 0 1 7  314 

E °2 " c 4 - . 0 4 0  394 - . 0 4 0  405 - . 0 4 0  395 --~041 7152 - . 0 4 1 7 2 5 5  --.041 723 52 [ 10] 

E 12 " c 4 - . 0 0 2 4  - . 0 0 2 4 1 2  - . 0 0 2 3 5 8  -- ,0009517 - . 0 0 0 9 2 7 5  

E 2z " c 4 - - , 0 0 6  095 - . 0 0 6  0803 
E 32 • c 4 0,004 732 0.004 712 

E °3 " c 6 .02783 - . 027841  -- .027852 - , 0 2 8 3 1 0 5  - . 0 2 8 3 1 1 7  - . 028311  6 [10] 
E 13 " c 6 - , 0 0 2 2 8 6  - . 0 0 2 2 7 8  

E 23 • c 6 - , 0 0 1  502 - , 0 0 1 4 7 9  

D E  nr - . 1 0 1  9313 - . 1 0 1  9326 - . 1 0 1  9320 A019320 - . I 0 1 9 3 2 6  

k nr 0.1029 0.103 1 0.102971 0.102971 0.102970 0.1030 [6] 
a nr --.261 8 - . 2 6 1  6 - . 2 6 1  183 - . 2 6 1  183 - . 2 6 1  184 

A R / R  " c z - - . 3 4 9  - . 3 4 8  34 --.348 961 - . 3 4 8  961 - . 3 4 8  985 

A D E / D E  • c 2 0.1328 0.13278 0.1327743 0.1327763 0.1327765 

B k / k  • e 2 0.901 0.693 0.651 72 0.651 839 0.651 839 

A a / a  " c 2 0.953 64 0.953 64 

a Float ing Gaussians,  carefully optimized for ~,00, 01o and 001 

b The value for E 21 . c 2 was given erroneously as + 0 . 7  in Ref. [ la], the rather  correet value of  - . 0 4 4 9  given above is f rom 

Ref. [ lb] (see second line of  Eq. (4.15) in Ref. [tb];  note the reversed order  of  indiees used there) 
c Relativistic per turbat ion energies for R = 2, corrected for the nonrelativistic equilibrium distance 1.997 193, with the help 

of  the present mixed per turbat ion terms ( E i d ( R e )  = E i J ( R  = 2) - 0.002807 - E i +  1j )  

d Determined by fitting polynomials  of  R and c 2 to the numerical  results of  [ 9] 

basis functions for the lower  components of  the O's were constructed implicitly 
by operating with ~ "p on the )~'s (so called kinetically balanced basis). 
Using the notation: 

E p c  = E (p'r) " R ë  p (30) 

the perturbation energies for p + r ~< 3 were then calculated algebraically within 
the framework of  double perturbation theory based on Eqs. (11, 13). Higher 
orders in the first superscript were then estimated by the finite perturbation 
approach: Perturbation energies E p,r for p-~-r = 3 were calculated at n = 4 
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additional points in the neighborhood of the nonrelativistic equilibrium distance 
R« (6R = 0.02a0) and then fittted by a polynomial 

Æp«(R« + d) = ~ ach- d i. (31) 
i = o  

The higher order perturbation energies are then obtained as 

Ep+i'r(Re) = G(° / (  p + i . (32) 

The present results, up to fifth order, are presented in Table 1 and compared with 
previous results from Eqs. (3, 4) in Ref. [1]. Concerning the pure relativistic 
perturbation energies, our results are in excellent agreement with the most recent 
results of other authors [4, 5, 6, 9, 10]. 

5 Discussion 

We treat molecular geometry changes and relativistic corrections as two simulta- 
neous perturbations. In the unscaled original approach (Eqs. (3, 4)), extended 
basis sets containing Omfn(R, r)/OR m in addition to f~ are required in order to 
obtain high accuracy for the higher order perturbation energies, especially those 
of mixed type. With the present method (Eqs. 1 la/b) we have easily obtained quite 
accurate results with nonextended bases (see Table 1). The relativistic perturba- 
tion is expressed by simply scaling either the potential or the kinetic energy. Both 
approaches yield exactly the same results also for finite basis sets. Because of its 
simplicity, the kinetic energy approach is more recommendable. The approach can 
be extended to many electron systems, but only to the overall breathing mode of 
polyatomic molecules. 

We note that it is very important for the higher order relativistic perturbation 
energies to include ~-orbitals in the basis for the relativistic correction of the ag 
wavefunction, ~b~, even though lag is mainly of ls character [ 11]. Concerning E 21, 
some previous literature values were not very accurate (see Table 2), while the 
value of E 21. c2= -0.06 obtained by standard Pauli perturbation theory [3] is 
reasonable. 

Having for the first time accurate high order rnixed energy corrections at hand, 
we may employ the equations of Sect. 3 to calculate the relativistic changes of 
bond length, AR, of force constant, Ak, and of anharmonicity, Aa. The relativistic 
change A of an equilibrium property p(Re) consists of two contributions. At lowest 
order: 

Ape = Adirpe + Aindpe ~ (Ôp /c~O)Ro -t- (Op/ÜR)Ro • ARe. (33)  

The first "direct" contribution is the direct relativistic change at the nonrelativistic 
molecular equilibrium geometry. The second "indirect" contribution is the change 
of the nonrelativistic property due to the relativistic change of the equilibrium 
geometry. The accurate determination of relativistic changes of bond length and 
other R-dependent properties was achieved by a scale transformation of the 
relativistic Hamiltonian so that it has the same (scaled) equilibrium bond length 
as the nonrelativistic one. 

Concerning the bond energy, the first order direct relativistic contribution 
ADE(R°e) = E °1 + 1/8c 2= --0.0135/c 2 dominates. Since the energy is stationary 
at Re, the indirect term k/2.  AR2= - - 0 . 0 2 5 / C  4 is only of second order in (1/c2). 
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Table 2. Relativistic change of force conswtant of H + at R ° and Rer el 
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A ~~lk/k. c 2 obtained from reference: 

-1.  
+0.6 

+8 
+0.6 

+13.6 
+0.9 

+ 0.652 
+0.651839 

[3] (analytical pert., without indirect correction: Luke et. al. 1969; Bishop 1977) 
(ditto, corrected for AR« with our E ij from Table 1) 

[4] (finite difference, flnite perturbation: Sundholm 1987/1988) 
[6] (finite difference, finite pert., improved accuracy: Sundholm 1990) 

[la] (new rel. pert. approach, original Eqs. (3, 4): these authors 1990, small basis) 
[lb] (ditto, improved basis set: these authors 1991) 

present work (finite perturbation approach of Eqs. (3, 4)) 
present work (algebraic solution of the scaled Eqs. (11)) 

More important  are the nonadiabatic corrections ( - 0.13 c m -  1 for the ground stare 
[11]), which are comparable to the relativistic corrections (ADE = - 0 . 1 6  cm-1).  

In the case of  the force constant, the direct term is ~ 2 E  21 = -0 .115/e  2, i.e. 
relativity tends to reduce the force constant, although it increases the value of  the 
bond energy. On the other hand, the relativistic bond contraction tends to increase 
the force constnat, due to the nonrelativistic anharmonicity, by ~ - 3 E 3 ° /  
E2°E 11= +0.18/c 2. So the latter indirect term is dominant and determines the 
sign of  A k ~  + 0.065/c 2. Many different values of  Ak have been published 
previously by different authors, including the present ones, see Table 2. Our 
present results corroborate the improved value of Sundholm [6]. 

Concerning the anharmonicity, we get Aa ~ 6E 3 1 -  12E4°/E2°EIl= +0.20/  
C 2 - -  0 . 4 5 / C  2 = - - 0 . 2 5 / C  2. Again, the change of  the nonrelativistic anharmonicity 
due to relativistic change of geometry is the dominant contribution and determines 
the sign of  Aa. 

The relativistic results on H + confirm several empirical nonrelativistic rules [7], 
according to which contraction of bond length ( - A R / R  > 0), increase of  bond 
energy (ADE/DE > 0) and increase of  force constant (Ak/k > 0) should go in 
parallel. We find for H +" - A R / R =  +0.35/c 2, A D E / D E =  +0.13/c 2 and 
A k / k =  +0.65/c 2. This is in agreement with Badger's rule [7], namely 
- A R  = const .  Ak, and with Gordy ' s  ruyle [7], ADE/DE = - c o n s t .  AR. The 
significant increase of  force constant corresponds to the significant increase of  
anharmonicity, A a/a = + 0.95/c 2. Without the dominance of the indirect term, i.e. 
the change of the nonrelativistic property with AR, the empirical rules would not 
hold for the relativistic effects. 

In general, in a homologous series of  molecules from one column (i) of  
the periodic system, fractional relativistic corrections of  properties p, (Ap/p), 
vary as: 

Ap/p ~ f(pO . (Z/«)2, (34) 

where Z is the unscreened nuclear charge. Since for H + , fk = 0.65 andf~ = 0.95, 
it is to be expected that diatomics of  heavy monovalent  atoms will show large 
relativistic increase of  force constant and anharmonicity. While the relativistic 
effects in alkali compounds are rather small, the force constants of  Ag- and 
Au-diatomics are drastically increased by relativity, in general by more than 40% 
and 100%, respectively, which corresponds to a factor o f fk  > 3. 
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Appendix 

Slater lsa AO Basis for H + at R i = _+0.998 596 666 

Exponent Position ( + R) Exponent Position ( + R) 

5.1 E8 0.998 596 666 
3.5 E7 0.998 596 666 
3.5 E6 0.998 596 666 
4.325 462 323 E5 0.998 569 622 
6.435 495 511 E4 0.998 595 065 
1.466 468 048 E4 0.998 592 652 
4.148 358 545 E3 0.998 575 946 
1.347 714 185 E3 0.998 544 440 
4.847 182 609 E2 0.998 433 731 
1.886 351 270 E2 0.998 210 678 
7.799 136 410 E1 0.997 583 355 
3.386 610 720 E1 0.996 418 608 
1.529 945 884 E1 0.993 207 282 
7.187 774 935 0.999 419 237 

6.927 028 155 0.910 502 569 
3.385 482 480 0.977 711 646 
2.402 017 358 0.539 998 793 
1.638 810 974 0.972 176 073 
1.097 934 991 0.500 614 471 
0.806 993 599 0.954 213 294 
0.547 494 371 0.292 511 401 
0.465 648 655 0.139 775 858 
0.424 455 286 0.861 735 833 
0.260 149 113 0.208 653 824 
0.246 597 597 0.930 799 165 
0.144 508 470 0.671 011 270 
0.080 512 889 0.709 988 965 


